Consider the vectors
$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 in \mathbb{R}^2 .

$$\begin{bmatrix} a \\ b \end{bmatrix} = a \begin{bmatrix} l \\ 0 \end{bmatrix} + b \begin{bmatrix} 0 \\ l \end{bmatrix} = (a - b) \begin{bmatrix} l \\ 0 \end{bmatrix} + b \begin{bmatrix} l \\ l \end{bmatrix}$$
$$= l \begin{bmatrix} l \\ 0 \end{bmatrix} + (l - a + b) \begin{bmatrix} 0 \\ l \end{bmatrix} + (a - l) \begin{bmatrix} l \\ l \end{bmatrix}, efc.$$

Choosing a linearly independent set of vectors ensures that neither of these things can occur:

Def: A set of vectors
$$\{\vec{x}_{1}, \vec{x}_{2}, ..., \vec{x}_{k}\}$$
 is linearly
independent if it satisfies the following:
If $t_{1}\vec{x}_{1} + t_{2}\vec{x}_{2} + ... + t_{k}\vec{x}_{k} = 0$, then $t_{1}=t_{2}=...=t_{k}=0$.
Otherwise it is linearly dependent.

Theorem: If $\{\vec{x}_1, ..., \vec{x}_k\}$ is linearly independent, then every vector in span $\{\vec{x}_1, ..., \vec{x}_k\}$ has a <u>unique</u> representation

as a linear combination of the
$$\vec{x}_i$$
.

Why? If $\vec{v} = a_1 \vec{x}_1 + \dots + a_k \vec{x}_k$ and $\vec{v} = b_1 \vec{x}_1 + \dots + b_k \vec{x}_{k,j}$ then $a_1 \vec{x}_1 + \dots + a_k \vec{x}_k = b_1 \vec{x}_1 + \dots + b_k \vec{x}_k$ $\Rightarrow (a_1 - b_1) \vec{x}_1 + \dots + (a_k - b_k) \vec{x}_k = 0$.

Thus, since they are linearly independent,

 $a_i - b_i = 0 \implies a_i = b_i$ for each *i*, so there is only one way to write \vec{v} as a linear combination of $\vec{x}_i, ..., \vec{x}_n$.

EX: Is
$$\begin{cases} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} \end{cases}$$
 linearly independent?

Assume $a\begin{pmatrix} 1\\0\\0 \end{pmatrix} + b\begin{pmatrix} 1\\1\\1 \end{pmatrix} + c\begin{pmatrix} 1\\0\\2 \end{pmatrix} = 0$.

We want to see if a, b, c <u>must</u> be O. This becomes a system of equations:

$$\begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

so a=b=c=0 is the only solution. So they are linearly independent.

EX: Are $\begin{bmatrix} 1\\ 1 \end{bmatrix}, \begin{bmatrix} 1\\ -1 \end{bmatrix}, \begin{bmatrix} 0\\ 1 \end{bmatrix}$ linearly indep? If $a \begin{bmatrix} 1\\ 1 \end{bmatrix} + b \begin{bmatrix} 1\\ -1 \end{bmatrix} + c \begin{bmatrix} 0\\ 1 \end{bmatrix} = 0$, then we have $\begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 1 \end{bmatrix} = 0$. Since This is homogeneous in

3 variables, and there are just 2 equations, there must be infinitely many (and thus nontrivial) solutions. Thus, they are <u>not</u> linearly independent.

We summarize this strategy as follows:

Linear independence test: To check if $\{\vec{x}_1, \vec{x}_2, ..., \vec{x}_k\}$ is linearly independent, i.) Set up a homog. system of equations $t_1 \vec{x}_1 + t_2 \vec{x}_2 + ... + t_k \vec{x}_k = \vec{0}$, i.e. $\begin{bmatrix} \vec{x}_1 & \vec{x}_2 & -- & \vec{x}_k \\ \vec{0} \end{bmatrix}$

2.) If there is a nontrivial solution (i.e. any parameter), they are not lin. indep, otherwise they are.

EX: The standard basis is linearly indep.:

$$\left[\vec{e}, \vec{e}_{2} \dots \vec{e}_{k} | \vec{0}\right] = \left[\mathbf{I} | \vec{0}\right], \text{ which has only the}$$

trivial solution.

$$\begin{bmatrix} \mathbf{x} & \mathbf{1}_{s} \\ \mathbf{x} \\ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} \end{bmatrix}$$
 linearly independent?

$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + b \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + c \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 \\ 0 \end{bmatrix} + b \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + c \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 0 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 \end{bmatrix} = \vec{0}$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 \end{bmatrix} = \vec{$$

$$a + b = 0$$
, $a - b = 0 \implies a = 0 = b$, so
 $\{\vec{x} + \vec{y}, \vec{x} - \vec{y}\}$ is also lin. independent.

EX: If
$$\{\vec{v}, \vec{w}\}$$
 is linearly dependent, and both \vec{v} and
 \vec{w} are nonzero, then
 $s\vec{v} + t\vec{w} = \vec{0}$ for some $s, t \neq 0$.
 $\Rightarrow s\vec{v} = -t\vec{w}$, so \vec{v} and \vec{w} must be parallel.

Conversely, if we assume
$$\vec{v}$$
 and \vec{w} are parallel vectors
then $\vec{v} = k\vec{w}$, some $k \neq 0$, so
 $\vec{v} - k\vec{w} = \vec{0}$, so $\{\vec{v}, \vec{w}\}$ is linearly dependent.
Thus, $\{\vec{v}, \vec{w}\}$ is line dependent if and only if \vec{v} and
 \vec{w} are parallel.

What about 3 vectors?

EX: If
$$\{\vec{u}, \vec{v}, \vec{w}\}$$
 is dependent (in \mathbb{R}^3), then
 $a\vec{u} + b\vec{v} + c\vec{w} = 0$, where $a, b, or c$ is nonzero.

Assume $a \neq 0$. Then $a\vec{u} = -b\vec{v} - c\vec{w} \implies \vec{u} = -\frac{b}{a}\vec{v} - \frac{c}{a}\vec{w}$, so

Thus, all 3 vectors must lie in the same plane.

The converse holds as well. So $\{\vec{u}, \vec{v}, \vec{w}\}$ is lin. dependent if and only if $\vec{u}, \vec{v}, \vec{w}$ all lie in the same plane. i.e. if span $\{\vec{u}, \vec{v}, \vec{w}\}$ is a plane or a line.

Matrices + linear independence

A an mxn matrix with columns
$$\vec{c}_1, ..., \vec{c}_n$$
.
If $\vec{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$ then

$$A \vec{\chi} = \left[\vec{c}_1 \dots \vec{c}_n\right] \vec{\chi} = \chi_1 \vec{c}_1 + \chi_2 \vec{c}_2 + \dots + \chi_n \vec{c}_n.$$

If we set $A\vec{x} = \vec{O}$, there are nontrivial solutions \iff $\vec{C}_{1,...,}\vec{C}_{n}$ are linearly dependent.

If instead we set $A\vec{x} = \vec{b}$, then there is a solution if and only if $\vec{b} = x_1\vec{c}_1 + \dots + x_n\vec{c}_n$ for some x_1, \dots, x_{n_s} i.e. \vec{b} is in span $\{\vec{c}_1, \dots, \vec{c}_n\}$.

We can summarize these in the following theorem:

Theorem: If $A = [\vec{c}_1 \dots \vec{c}_n]$ is an maximatrix, then 1.) $\{\vec{c}_1, \vec{c}_2, \dots, \vec{c}_n\}$ is linearly independent if and only if $A \vec{x} = \vec{O}$ has no nontrivial solutions.

2.) R^m=span { c_i,..., c_n} if and only if A = b has a solution for every b in R^m.

For square matrices, we can relate these conditions to invertibility:

Theorem: If A is an hxn matrix, the following are equivalent:

- 2.) The columns of A are linearly independent. 3.) The columns of A span R^h.
- 4.) The rows of A are linearly independent.
- 5.) The rows of A span R^h.

Now we have a simpler way to check linear indep. if we have a vectors in IR":

Ex: Are
$$\begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ -1 \\ 1 \end{bmatrix}$$
 linearly indep?

Set
$$A = \begin{bmatrix} 1 & 3 & -1 \\ 2 & 0 & -1 \\ 0 & 1 & 1 \end{bmatrix}$$
.
 $det A = -1 \begin{vmatrix} 1 & -1 \\ 2 & -1 \end{vmatrix} + 1 \begin{vmatrix} 1 & 3 \\ 2 & 0 \end{vmatrix}$
 $= -1 (-1 + 2) + 1 (0 - 6)$
 $= -1 (1) + 1 (-6) = -1 - 6 = -7$

so A is invertible, so they are linearly independent, and they span R³.

Dimension

Very important theorem: If U is a subspace of \mathbb{R}^{h} , and U is spanned by m vectors, then if U contains k linearly independent vectors, then $k \leq m$.

A maximum collection of linearly indep. vectors in a subspace is called a basis. More precisely:

Def: If
$$U$$
 is a subspace of IR^h , a set of vectors
 $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_m\}$ in U is a basis if:
1.) $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_m\}$ is linearly independent, and
2.) $U = speen\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_m\}$

It turns out that any two bases for a subspace will have the same # of vectors.

i.e. if
$$\{\vec{y}_1, ..., \vec{y}_k\}$$
 is another basis for U , then
span $\{\vec{y}_1, ..., \vec{y}_k\} = U$ and $\{\vec{x}_1, ..., \vec{x}_k\}$ is a set of
linearly independent vectors in U , so $m \le k$.
By the same argument, $k \le m$. Thus $m = k$.

This number is called the dimension of U:

Def: If U is a subspace of \mathbb{R}^n and $\{\vec{x}_1, ..., \vec{x}_m\}$ is a basis of U, then the <u>dimension</u> of U is m, denoted dim U=m.

Ex: If $\{\vec{e}_1, ..., \vec{e}_n\}$ is the standard basis in \mathbb{R}^n , then $spon\{\vec{e}_1, ..., \vec{e}_n\} = \mathbb{R}^n$ and it's linearly independent, $so\{\vec{e}_1, ..., \vec{e}_n\} \leq 1$ indeed a basis, and $dim \mathbb{R}^n = n$.

Ex: We saw above that any invertible han matrix has lin. indep rows (and cols) that span R^h. Thus, the rows (or cols) of any invertible matrix forms a basis for R^h.

Note: A key takeaway here is that there is more than one possible <u>basis</u> for each subspace, but the dimension will always be the same.

Ex: let
$$U = \left\{ \begin{bmatrix} s \\ s+t \end{bmatrix} \mid s, t \text{ in } IR \right\}$$
.
Is this a subspace of IR^3 ?
Notice that $\begin{bmatrix} s \\ s+t \\ s \end{bmatrix} = s \begin{bmatrix} 1 \\ 1 \end{bmatrix} + t \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$,
so since s and t can be any real #s,
 $U = span \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$, so it is a subspace, since the
span of any set of vectors is a subspace

What is dimU? (We know dim $U \leq 2$. Why? By the very important theorem. Any basis will be lin. indep so the number of basis elts can be at most the # of spanning vectors.)

$$\{\vec{u}, \vec{v}\}\$$
 spans \mathcal{U} so we need to check if it is lin. indep.
Since neither \vec{u} nor \vec{v} is a scalar multiple of the other, they are linearly independent. Thus $\{\vec{u}, \vec{v}\}\$ is a basis, so dim $\mathcal{U} = 2$.

EX: dim {03 = 0. There is no linearly independent collection of vectors in {03.

Theorem: let
$$U \neq \{ 0 \}$$
 be a subspace of \mathbb{R}^{h} . Then:
1.) U has a basis and dim $U \leq h$.

3.) Any spanning set for U can be cut down to a basis of U (by deleting vectors).

Ex. If
$$\vec{u} = \begin{bmatrix} i \\ i \end{bmatrix}$$
, $\vec{v} = \begin{bmatrix} 2 \\ i \end{bmatrix}$, $\{\vec{u}, \vec{v}\}$ is linearly independent
in \mathbb{R}^3 . Thus, we should be able to add a vector from
the standard basis to $\{\vec{u}, \vec{v}\}$ to make it a basis.

Does
$$\vec{e}_1$$
 work? i.e. is $\{\vec{u}, \vec{v}, \vec{e}_1\}$ linearly independent and span \mathbb{R}^3 ? If

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
 then $det A = -1$, so
A is invertible, so $\{\vec{u}, \vec{v}, \vec{e}, \vec{S}\}$ is a bosis.

In general, if dimU=m and we have m vectors which either spon U or are lin. independent, then they form a basis. That is: Theorem: If U is a subspace of \mathbb{R}^{h} where dim U = m, let $B = \{\overline{n}, ..., \overline{n}_{m}\}$, m vectors in U. Then B is linearly independent if and only if $\operatorname{span} B = U$.

EX:
$$\left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$$
 spans \mathbb{R}^2 ,

and any pair forms a basis, since each pair is lin. indep. So, e.g. $\left[\begin{bmatrix} z \\ z \end{bmatrix}, \begin{bmatrix} -1 \\ -1 \end{bmatrix} \right]$ is a basis for \mathbb{R}^{h} .

If one subspace is inside of another, how do Their dimensions compare?

Theorem: If U and V are subspaces of
$$\mathbb{R}^{h}$$
, and $U \subseteq V$, i.e. U is contained in V, then
1.) dimUsdimV.

2.) If
$$\dim U = \dim V$$
, then $U = V$.

EX: If U is a subspace of
$$\mathbb{R}^3$$
, then
 $\dim U = 3 \iff U = \mathbb{R}^3$,
 $\dim U = 2 \iff U$ is a plane through the origin,
 $\dim U = 1 \iff U$ is a line through the origin.